Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 338: 122643, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775024

RESUMO

Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.


Assuntos
Antibacterianos , Gado , Animais , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
2.
J Hazard Mater ; 452: 131359, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031672

RESUMO

Environmental microbes in rhizosphere soil and surrounding plants have the potential to alter ecosystem functions. We investigated the microbial communities inhabiting the rhizosphere soils of both serpentine and non-serpentine rhizosphere zones to evaluate their heavy metal tolerance and ability to promote plant growth, utilizing 16S rRNA metabarcoding. The Biolog-EcoPlate technique was employed to determine how abiotic stress factors affect carbon utilization capacity by rhizospheric microbial communities in the serpentine geo-ecosystem. The phyla Proteobacteria, Acidobacteria, Bacteroidetes, and Nitrospirae colonized in the roots of Miscanthus sp., Biden sp., and Oryza sp. showed noticeable differences in different rhizosphere zones. The PICRUSt2-based analysis identified chromium/iron resistance genes (ceuE, chrA) and arsenic resistance genes (arsR, acr3, arsC) abundant in all the studied rhizosphere soils. Notably, nickel resistance genes (nikA, nikD, nikE, and nikR) from Arthrobacter, Microbacterium, and Streptomyces strongly correlate with functions related to solubilization of nickel and an increase in siderophore and IAA production. The abundance of Arthrobacter, Clostridium, Geobacter, Dechloromonas, Pseudomonas, and Flavobacterium was positively correlated with chromium and nickel but negatively correlated with the calcium/magnesium ratio. Our results contribute to a better understanding of the functions of plant-tolerant PGPR interaction in the heavy metal-contaminated rhizosphere and eco-physiological responses from long-term biological weathering.


Assuntos
Metais Pesados , Microbiota , Níquel/análise , Rizosfera , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Flavobacterium , Solo/química , Plantas , Cromo/toxicidade , Cromo/análise , Microbiologia do Solo , Raízes de Plantas/microbiologia
3.
Environ Res ; 216(Pt 2): 114536, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228688

RESUMO

Mud volcanoes are the most dynamic and unstable sedimentary structures in the areas of tectonic compression like the subduction zones. In this study, we comprehensively analyzed the distribution of minerals as well as diversity, abundance and metabolic potential of the microbial communities of major mud volcanic groups across Taiwan namely Chu-kou Fault (CKF), Gu-ting-keng Anticline (GTKA), Chi-shan Fault (CSF), and Longitudinal Valley Fault (LVF). The mud volcano fluids recorded relatively higher Na and Cl contents than the other elements, particularly in the CKF and GTKA groups. The highest microbial diversity and richness were observed in the CSF group, followed by the GTKA group, whereas the lowest microbial diversity was observed in the CKF and LVF groups. Proteobacteria were common in all the sampling sites, except WST-7 and WST-H (Wu-Shan-Ting) of the CSF group, which were abundant in Chloroflexi. The halophilic genus Alterococcus was abundant in the Na-and Cl-rich CL-A sites of the CKF group. Sulfurovum was dominant in the CLHS (Chung-Lun hot spring) site of the CKF group and was positively correlated with sulfur/thiosulfate respiration, which might have resulted in a higher expression of these pathways in the respective group. Aerobic methane-oxidizing microbial communities, such as Methylobacter, Methylomicrobium, Methylomonas, and Methylosoma, constituted a dominant part of the LVF and CSF groups, except for the YNH-A and YNH-B (Yang-Nyu-Hu) sites. The WST-7 and JS sites were abundant in both methane-producing and methane-oxidizing microbial communities. The LGH-F1 (Lei-Gong-Huo) site was dominated by both methanotrophic and methylotrophic genera, such as Methylomicrobium and Methylophaga, respectively. Methylotrophy, methanotrophs, and hydrocarbon-degrading pathways were more abundant in the LVF and CSF groups but not in the remaining groups. The results of this study extend our knowledge of the diversity, abundance, and metabolic functions of prokaryotes in major terrestrial mud volcanoes in Taiwan.


Assuntos
Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/química , RNA Ribossômico 16S , Bactérias , Tolnaftato , Taiwan , Filogenia , Metano/análise , Minerais/metabolismo
4.
Sci Total Environ ; 856(Pt 1): 159115, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181827

RESUMO

Microorganisms developed a mechanism that copes with heat, acidity, and high dissolved metal concentrations that likely first evolved. The geothermal fluids emerging in the geothermal springs of Taiwan, located at a subduction zone, are still under signs of progress in the characterization of the various microbial taxonomic changes over time. However, no systematic studies have been performed to compare water, biofilms, and sediment bacterial communities and the primary driving force of dissolved and mineral substrates capable of supporting microbial metabolism. In this study, 16S rRNA gene sequencing was employed for bacterial community exploration, and their potential metabolic pathways involved from water, biofilms, and sediment samples, collected from the geothermal valley (Ti-re-ku). Metagenomic data revealed that the water samples had higher bacterial diversity and richness than biofilms and sediment samples. At the genus level, Alicyclobacillus, Thiomonas, Acidocella, Metallibacterium, Picrophilus, and Legionella were significantly abundant in the water samples. The biofilms were rich in Aciditerrimonas, Bacillus, Acidithiobacillus, and Lysinibacillus, whereas the sediment samples were abundant in Sulfobacillus. The PICRUSt2-predicted functional results revealed that heavy metal-related functions such as heavy-metal exporter system, cobalt­zinc­cadmium resistance, arsenical pump, high-affinity nickel-transport, and copper resistance metabolisms were significant in the water samples. Moreover, sulfur-related pathways such as thiosulfate oxidation, dissimilatory sulfate reduction, and assimilatory sulfate reduction were important in water samples, followed by biofilms and sediment. Therefore, our findings highlighted the comparative taxonomic diversity and functional composition contributions to geothermal fluid, with implications for understanding the evolution and ecological niche dimension of microbes which are the key to geothermal ecosystem function.


Assuntos
Fontes Termais , Metais Pesados , Fontes Termais/microbiologia , Ecossistema , RNA Ribossômico 16S/genética , Água/química , Taiwan , Bactérias/genética , Biofilmes , Sulfatos
5.
Environ Res ; 216(Pt 4): 114664, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336091

RESUMO

In the present study, we have underpinned the serpentine rock, serpentinized ultramafic soil and rhizosphere's microbial communities, signifying their heavy metals-exposed taxa signatures and functional repertoires in comparison to non-serpentine soils. The results revealed that the serpentine rock embedded soil highlighted the geo-accumulation of higher amount of Cr and Ni impacting soil microbial diversity negatively by metal stress-driven selection. Biolog Ecoplate CLPP defined a restricted spectrum of C-utilization in the higher heavy metal-containing serpentine samples compared to non-serpentine. The linear discriminant analysis (LDA) score identified a higher abundance of Desulfobacterota, Opitutales, and Bacteroidales in low Cr and Ni-stressed non-serpentine-exposed samples. Whereas the abundance of Propionibacteriales and Actinobacteriota were significantly enriched in the serpentine niche. Further, the C, N, S, Fe, and methane biogeochemical cycles linked functional members were identified, and showing higher functional diversity in low Cr and Ni concentration-containing rhizosphere JS-soils. The Pearson correlation coefficient (r) value confirmed the abundance of functional members linked to specific biogeochemical cycle, positively correlated with relevant pathway enrichment. Ultimately, this study highlighted the heavy metal stress within a serpentine setting that could limit the resident microbial community's metabolic diversity and further select the bacteria that could thrive in the serpentine-associated heavy metal-stressed soils. These acclimatized microbes could pave the way for the future applications in the soil conservation and management.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Solo , Poluentes do Solo/análise , Microbiologia do Solo , Metais Pesados/análise , Bactérias/metabolismo , Asbestos Serpentinas/metabolismo
6.
Environ Res ; 214(Pt 2): 113802, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810813

RESUMO

Heavy metal release from harsh ultramafic settings influences microbial diversity and function in soil ecology. This study aimed to determine how serpentine mineralosphere bacterial assemblies and their functions differed in two different plate-tectonic plains and mining exposure sites under heavy metal release conditions. The results showed that the Proteobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Chloroflexi were the most abundant bacterial groups among all the sites. The log10-based LDA scores highlighted that some specific groups of bacterial assemblies were enriched in plate-tectonic plains and mining activity areas of the serpentine mineralosphere. Functional prediction revealed that the abundance of heavy metal (Cr and Ni) resistance and biogeochemical cycles involving functional KEGG orthology varied in samples from plate-tectonic plains and mining activity sites. The bipartite plot showed that the enrichment of the biogeochemical cycle and heavy metal resistance functional genes correlated with the abundance of serpentine mineralosphere bacterial groups at a 0.005% confidence level. The co-occurrence network plot revealed that the interconnection pattern of the indigenous bacterial assemblies changed in different plate-tectonic plains and mining exposure areas. Finally, this study concluded that due to heavy metal release, the variation in bacterial assemblies, their functioning, and intercommunity co-occurrence patterns were clarified the synergetic effect of mineral-microbial geochemical weathering process in serpentine mining areas.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Bactérias/genética , Metais Pesados/análise , Minerais , Solo , Microbiologia do Solo , Poluentes do Solo/análise
7.
J Hazard Mater ; 431: 128557, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247742

RESUMO

This study aims to determine and compare the bacterial community and functional profiles associated with serpentine sites, innate hyper-accumulating weed, downgradient agricultural farmlands and non-serpentine sites using 16S rRNA gene sequencing. Elemental analysis revealed that the serpentine rock and weathered soil have higher magnesium, nickel, chromium, magnesium/calcium and lower calcium/magnesium ratios and agricultural farmlands have recorded elevated chromium. Proteobacteria were found predominant, except the non-serpentine site which was rich in Cyanobacteria. PCA analysis at the genus level indicates the uniqueness of different experimental groups, except the hyperaccumulators which exhibited relatively less dissimilarity. The shift analysis showed the serpentine sites were characterized by the abundance of bacteria having heavy metal effluxion. The hyper-accumulating weeds were higher in plant growth-promoting bacteria expressing tolerance against heavy metals toxicity such as nickel, chromium, cobalt and arsenic. Besides, the agricultural lands were abundant in wetland-associated methanogens and metal (manganese, iron and zinc) transporting function related bacteria. The results suggest that the inherent edaphic factors including heavy metal content, the interacting behavior of hyperaccumulator's rhizosphere microbiota with soil and anthropogenic activities such as agricultural practices could be a major determinant of the variation in the bacterial community selection and abundance in the respective study sites.


Assuntos
Metais Pesados , Poluentes do Solo , Asbestos Serpentinas , Bactérias/genética , Cálcio/análise , Cromo/análise , Fazendas , Genes de RNAr , Magnésio , Metais Pesados/análise , Metais Pesados/toxicidade , Níquel/análise , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Antibiotics (Basel) ; 11(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35052958

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a dynamic and tenacious pathogenic bacterium which is prevalent in livestock farming environments. This study investigated the possibility of MRSA spread via bioaerosol transmission from an indoor chicken farm environment to outdoors downwind (up to 50 m). The concentration of total airborne bacteria colony formation units (CFUs) was decreased with increasing sampling distance ranging from 9.18 × 101 to 3.67 × 103 per air volume (m3). Among the 21 MRSA isolates, 15 were isolated from indoor chicken sheds and exposure square areas, whereas 6 were isolated from downwind bioaerosol samples. Molecular characterization revealed that all of them carried the staphylococcal cassette chromosome mec (SCCmec) VIII, and they were remarkably linked with the hospital-associated MRSA group. Spa typing analysis determined that all MRSA isolates belonged to spa type t002. Virulence analysis showed that 100% of total isolates possessed exfoliative toxin A (eta), whereas 38.09% and 23.80% strains carried exfoliative toxin B (etb) and enterotoxin A (entA). Additionally, all of these MRSA isolates carried multidrug resistance properties and showed their resistance against chloramphenicol, ciprofloxacin, clindamycin, tetracycline, and erythromycin. In addition, chi-squared statistical analysis displayed a significant distributional relationship of gene phenotypes between MRSA isolates from chicken farm indoor and downwind bioaerosol samples. The results of this study revealed that chicken farm indoor air might act as a hotspot of MRSA local community-level outbreak, wherein the short-distance dispersal of MRSA could be supported by bioaerosols.

9.
J Hazard Mater ; 424(Pt A): 127266, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600373

RESUMO

This study explores the toxic effect of TCE at different depths of sub-surface soil and underpins microbial community-level suitable carbon (C)-sources that provided directionality to the in situ biostimulation effort via augmentation strategy for effective TCE remediation in soil. The impacts on resident microbial communities and their functional profiles that govern the TCE biodegradation process were identified. Highly contaminated PW01 soil (9 m depth) had severely limited microbial diversity and was enriched in Proteobacteria and Firmicutes. The abundance of TCE degradation-associated genera was observed in all contaminated samples, and the abundance of TCE-degradation-related taxa were positively correlated with soil TCE contamination levels. Community-level metabolic activity associated with the utilization of diverse external C-sources was directly influenced by TCE concentration and soil depth. Multivariate data analysis revealed that the functional genus, TCE concentration, and selected available C substrate uptake capacity correlated in soil samples. Pearson's correlation tests revealed that C sources such as L-arginine, phenylethylamine and γ-hydroxybutyric acid utilization trait exhibited significant positive correlations with chloroalkane and chloroalkene degradation pathway abundance. Ultimately, depth and TCE contamination level-associated soil microbiota and their most preferred C-source understanding could add to facilitate effective biostimulation via external nutrient amendment for efficient in situ TCE degradation.


Assuntos
Poluentes do Solo , Tricloroetileno , Biodegradação Ambiental , Solo , Microbiologia do Solo
10.
Antibiotics (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34438967

RESUMO

The outbreak of airborne pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) through bioaerosol, and their molecular characterization around domestic poultry farming areas, was not completely understood. This imposes risk of a MRSA-associated health threat for the relevant livestock food production units. To address this issue, the present study investigated the role of bioaerosol in transmitting MRSA strains in poultry house settings by combining molecular typing, phylogenetic classification, antibiotic susceptibility, and virulence gene distribution patterns. The present study highlights that all 18 bioaerosol and stool samples collected were MRSA positive, with a unique set of virulence factors. Out of 57 isolated MRSA isolates, 68.4% and 19.3% consisted of SCCmec I and IV elements, respectively, which are commonly linked with hospital-acquired and livestock-associated MRSA strains. It is worth noting that the exfoliative toxin eta and etb genes were carried by 100% and 70.2% of all isolates, respectively. Only 17.5% of strains showed the presence of enterotoxin entC. These MRSA isolates were resistant to chloramphenicol (C), ciprofloxacin (CIP), clindamycin (DA), erythromycin (E), and tetracycline (T), signifying their multi-drug resistance traits. A cluster of phylogenetic analysis described that 80.7% and 15.8% of total isolates belonged to Staphylococcus aureus protein A (spa) type t002 and t548. Whereas 3.5% were reflected as a new spa type. Additionally, as per the chi-squared test score value, these two spa types (t002 and t548) have a distribution correlation with HA-MRSA and LA-MRSA in all the samples (p < 0.005, chi-squared test; degree of freedom = 1). Ultimately, this study highlights the prevalence of MRSA colonization in the conventional poultry farm environment, showing the risk of bioaerosol transmission, which needs epidemiological attention and prevention strategies.

11.
Microorganisms ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442653

RESUMO

Fermented fruits and vegetables play an important role in safeguarding food security world-wide. Recently, robust sequencing-based microbial community analysis platforms have improved microbial safety assessment. This study aimed to examine the composition of bacteria and evaluate the bacterial safety of fermented fruit products using high-throughput 16S-rRNA metagenomic analysis. The operational taxonomic unit-based taxonomic classification of DNA sequences revealed 53 bacterial genera. However, the amplicon sequencing variant (ASV)-based clustering revealed 43 classifiable bacterial genera. Taxonomic classifications revealed that the abundance of Sphingomonas, which was the predominant genus in the majority of tested samples, was more than 85-90% among the total identified bacterial community in most samples. Among these identified genera, 13 low abundance genera were potential opportunistic pathogens, including Acinetobacter, Bacillus, Staphylococcus, Clostridium, Klebsiella, Mycobacterium, Ochrobactrum, Chryseobacterium, Stenotrophomonas, and Streptococcus. Of these 13 genera, 13 major opportunistic pathogenic species were validated using polymerase chain reaction. The pathogens were not detected in the samples of different stages and the final products of fermentation, except in one sample from the first stage of fermentation in which S. aureus was detected. This finding was consistent with that of ASV-based taxonomic classification according to which S. aureus was detected only in the sample from the first stage of fermentation. However, S. aureus was not significantly correlated with the human disease pathways. These results indicated that fermentation is a reliable and safe process as pathogenic bacteria were not detected in the fermentation products. The hybrid method reported in this study can be used simultaneously to evaluate the bacterial diversity, their functional predictions and safety assessment of novel fermentation products. Additionally, this hybrid method does not involve the random detection of pathogens, which can markedly decrease the time of detection and food safety verification. Furthermore, this hybrid method can be used for the quality control of products and the identification of external contamination.

12.
Microorganisms ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442868

RESUMO

Carbon utilization of bacterial communities is a key factor of the biomineralization process in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is associated with the availability of carbon sources in such an ecological niche. As cave environments promote oligotrophic (carbon source stress) situations, the present study investigated the variations of different carbon substrate utilization patterns of soil and rock microbial communities between outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlate™ assay and categorized their taxonomical structure and predicted functional metabolic pathways based on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by Biolog EcoPlate™ assay revealed that microbes from outside of the cave were metabolically active and had higher carbon source utilization rate than the microbial community inside the cave. 16S rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planctomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes were associated with inside-cave samples. Functional prediction showed bacterial communities both inside and outside of the cave were functionally involved in the metabolism of carbohydrates, amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information processing. However, the amino acid and carbohydrate metabolic pathways were predominantly linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and energy metabolism were associated with inside-cave samples. Overall, a positive correlation was observed between Biolog EcoPlate™ assay carbon utilization and the abundance of functional metabolic pathways in this study.

13.
Antibiotics (Basel) ; 10(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205552

RESUMO

To provide evidence of the cross-contamination of emerging pathogenic microbes in a local network between long-term care facilities (LTCFs) and hospitals, this study emphasizes the molecular typing, the prevalence of virulence genes, and the antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus. MRSA isolates were characterized from 246 samples collected from LTCFs, medical tubes of LTCF residents, and hospital environments of two cities, Chiayi and Changhua. Species identification, molecular characterization, and drug resistance analysis were performed. Hospital environments had a higher MRSA detection rate than that of LTCF environments, where moist samples are a hotspot of MRSA habitats, including tube samples from LTCF residents. All MRSA isolates in this study carried the exfoliative toxin eta gene (100%). The majority of MRSA isolates were resistant to erythromycin (76.7%), gentamicin (60%), and ciprofloxacin (55%). The percentage of multidrug-resistant MRSA isolates was approximately 50%. The enterobacterial repetitive intergenic consensus polymerase chain reaction results showed that 18 MRSA isolates belonged to a specific cluster. This implied that genetically similar isolates were spread between hospitals and LTCFs in Changhua city. This study highlights the threat to the health of LTCFs' residents posed by hospital contact with MRSA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...